Insertion preference of maize and rice miniature inverted repeat transposable elements as revealed by the analysis of nested elements.

نویسندگان

  • N Jiang
  • S R Wessler
چکیده

A 128-bp insertion into the maize waxy-B2 allele led to the discovery of Tourist, a family of miniature inverted repeat transposable elements (MITEs). As a special category of nonautonomous elements, MITEs are distinguished by their high copy number, small size, and close association with plant genes. In maize, some Tourist elements (named Tourist-Zm) are present as adjacent or nested insertions. To determine whether the formation of multimers is a common feature of MITEs, we performed a more thorough survey, including an estimation of the proportion of multimers, with 30.2 Mb of publicly available rice genome sequence. Among the 6600 MITEs identified, >10% were present as multimers. The proportion of multimers differs for different MITE families. For some MITE families, a high frequency of self-insertions was found. The fact that all 340 multimers are unique indicates that the multimers are not capable of further amplification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P instability factor: an active maize transposon system associated with the amplification of Tourist-like MITEs and a new superfamily of transposases.

Miniature inverted-repeat transposable elements (MITEs) are widespread and abundant in both plant and animal genomes. Despite the discovery and characterization of many MITE families, their origin and transposition mechanism are still poorly understood, largely because MITEs are nonautonomous elements with no coding capacity. The starting point for this study was P instability factor (PIF), an ...

متن کامل

PIF- and Pong-like transposable elements: distribution, evolution and relationship with Tourist-like miniature inverted-repeat transposable elements.

Miniature inverted-repeat transposable elements (MITEs) are short, nonautonomous DNA elements that are widespread and abundant in plant genomes. Most of the hundreds of thousands of MITEs identified to date have been divided into two major groups on the basis of shared structural and sequence characteristics: Tourist-like and Stowaway-like. Since MITEs have no coding capacity, they must rely on...

متن کامل

Identi®cation and characterization of 14 transposon-like elements in the noncoding regions of members of the Xa21 family of disease resistance genes in rice

The rice disease resistance gene Xa21, which encodes a receptor-like kinase, is a member of a multigene family. Based on comparisons of genomic sequences of seven family members, seventeen transposon-like elements were identi®ed in the 5¢ and 3¢ ̄anking regions and introns of these genes. Sequence characterization revealed that these elements are diverse, showing similarity to maize Ds, CACTA a...

متن کامل

Recent, extensive, and preferential insertion of members of the miniature inverted-repeat transposable element family Heartbreaker into genic regions of maize.

A 314-bp DNA element called Heartbreaker-hm1 (Hbr-hm1) was previously identified in the 3' untranslated region of a mutant allele of the maize disease resistance gene HM1. This element has structural features of miniature inverted-repeat transposable elements (MITEs) and is a member of a large family of approximately 4,000 copies in the maize genome. Unlike previously described MITEs, most memb...

متن کامل

Genome-wide analysis of mariner-like transposable elements in rice reveals complex relationships with stowaway miniature inverted repeat transposable elements (MITEs).

Stowaway is a superfamily of miniature inverted repeat transposable elements (MITEs) that is widespread and abundant in plant genomes. Like other MITEs, however, its origin and mode of amplification are poorly understood. Several lines of evidence point to plant mariner-like elements (MLEs) as the autonomous partners of the nonautonomous Stowaway MITEs. To better understand this relationship, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 13 11  شماره 

صفحات  -

تاریخ انتشار 2001